Effective Implementation of GPU-based Revised Simplex algorithm applying new memory management and cycle avoidance strategies
نویسندگان
چکیده
Graphics Processing Units (GPUs) with high computational capabilities used as modern parallel platforms to deal with complex computational problems. We use this platform to solve large-scale linear programing problems by revised simplex algorithm. To implement this algorithm, we propose some new memory management strategies. In addition, to avoid cycling because of degeneracy conditions, we use a tabu rule for entering variable selection in the revised simplex algorithm. To evaluate this algorithm, we consider two sets of benchmark problems and compare the speedup factors for these problems. The comparisons demonstrate that the proposed method is highly effective and solve the problems with the maximum speedup factors 165.2 and 65.46 with respect to the sequential version and Matlab Linprog solver respectively.
منابع مشابه
Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملGPU implementation of a parallel two-list algorithm for the subset-sum problem
The subset-sum problem is a well-known non-deterministic polynomial-time complete (NP-complete) decision problem. This paper proposes a novel and efficient implementation of a parallel two-list algorithm for solving the problem on a graphics processing unit (GPU) using Compute Unified Device Architecture (CUDA). The algorithm is composed of a generation stage, a pruning stage, and a search stag...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA new network simplex algorithm to reduce consecutive degenerate pivots and prevent stalling
It is well known that in operations research, degeneracy can cause a cycle in a network simplex algorithm which can be prevented by maintaining strong feasible bases in each pivot. Also, in a network consists of n arcs and m nodes, not considering any new conditions on the entering variable, the upper bound of consecutive degenerate pivots is equal $left( begin{array}{c} n...
متن کامل